Cement oscillation increases interlock strength at the cement-bone interface, with commentary.

نویسندگان

  • Yi Wang
  • Pengfei Han
  • Wenguang Gu
  • Zuowei Shi
  • Dabin Li
  • Changli Wang
چکیده

Modern cementing techniques aim to improve the interlock between bone and cement and to establish a durable interface. Cement penetration is generally believed to influence interface failure, but current methods for improving the cement-bone interface are inadequate. Oscillation is the reciprocated movement of an object through its balanced position, or the quantum physics of systematic fluctuation back and forth near an average value (or trimmed value). To increase the interlock strength at the cement-bone interface, we designed a cement oscillator according to the principles of vibrational mechanics. To evaluate the effect of oscillation on the quality of interlock strength at the cement-bone interface, we randomly divided 156 femoral bones of adult pigs into 2 groups, oscillated and control, and performed mechanical tests to assess interlock strength at the cement-bone interface. The filling effect of bone cement was observed and analyzed under a stereomicroscope, and then each oscillated femur was compared with a control femur. The interlock strength at the cement-bone interface in the oscillated group was significantly greater than in the control group (P<.05), and the filling effect in the oscillated group was also better than that in the control group (P<.05). Our findings show that oscillation of bone cement significantly increases interlock strength at the cement-bone interface, point the way for clinicians to develop a high-performance and pragmatic fixation technique for prostheses to increase interlock strength, and will be of considerable practical importance in helping to prevent aseptic loosening of cemented prostheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical effects of morphological variations of the cortical wall at the bone-cement interface

BACKGROUND The integrity of bone-cement interface is very important for the stabilization and long-term sustain of cemented prosthesis. Variations in the bone-cement interface morphology may affect the mechanical response of the shape-closed interlock. METHODS Self-developed new reamer was used to process fresh pig reamed femoral canal, creating cortical grooves in the canal wall of experimen...

متن کامل

Shear properties of bilaminar polymethylmethacrylate cement mantles in revision hip joint arthroplasty.

Although cement-within-cement revision arthroplasty minimizes the complications associated with removal of secure PMMA, failure at the interfacial region between new and old cement mantles remains a theoretical concern. This article assesses the variability in shear properties of bilaminar cement mantles related to duration of postcure and the use of antibiotic cements. Bilaminar cement mantles...

متن کامل

Attachment of PMMA cement to bone: force measurements in rats.

The attachment of an implant material to bone relates to surface roughness and surface chemistry. There is a relatively low chemical bonding strength of so-called bioactive surfaces. Hydroxyapatite interfaces typically have an interfacial tensile strength of 0.15-1.5 MPa. An attachment force similar to that of bioactive surfaces might also be reached through mechanical interlock with ordinary b...

متن کامل

Cement-Implant Interface Fracture Failure by Crack Initiation Due to Interface Cavity Stress Concentration

Nowadays total joint replacements are widely used in the world, so in average 800,000 joint surgeries are done yearly only in Europe and North America. However implant loosening is and remains as the major issue of all implant failures and therefore causes revision surgery procedures. Studies and experiments have identified poor fixation of implants most likely is the main cause of long term im...

متن کامل

Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.

BACKGROUND Although shoulder arthroplasty is an accepted treatment for osteoarthritis, loosening of the glenoid component, which mainly occurs at the bone-cement interface, remains a major concern. Presently, the mechanical effect of the cement mantel thickness on the bone-cement interface is still unclear. METHODS Finite element analysis of a prosthetic scapula was used to evaluate the effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Orthopedics

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2009